If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+96t-78
We move all terms to the left:
0-(-16t^2+96t-78)=0
We add all the numbers together, and all the variables
-(-16t^2+96t-78)=0
We get rid of parentheses
16t^2-96t+78=0
a = 16; b = -96; c = +78;
Δ = b2-4ac
Δ = -962-4·16·78
Δ = 4224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4224}=\sqrt{64*66}=\sqrt{64}*\sqrt{66}=8\sqrt{66}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-8\sqrt{66}}{2*16}=\frac{96-8\sqrt{66}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+8\sqrt{66}}{2*16}=\frac{96+8\sqrt{66}}{32} $
| 23x6=(.)+(3x6) | | 2x-5/5x-2=3/22 | | x2–20x=5 | | 2b–7=15 | | -19=3/4v-7 | | 2k-5/5k-2=3/22 | | x+12=30–2x | | -8x+1=-5x | | -4a+7=a+3 | | 8x−10=38 | | 5+7x=180 | | 81x^2+4x-12=0 | | 4=n*32 | | 34/6=170/x | | N=32x4 | | 2q−9=q | | .50d-12=24 | | 3x−4)−(x−7)=−6(x+1)+7x | | 4y−7=2y+9 | | X-7=3x+(-5) | | Y=-325+14x | | -11r-2=-24+ | | 8k=10k−10 | | 10+10v=8v | | 112=6x+x^2 | | 4x+20=x–15 | | y2=-81 | | 5^(-3n-1)=625 | | 2x^2−x=−8x+4 | | 2x2−x=−8x+4 | | 15x(13x-10)=x-14 | | 5^-3n-1=625 |